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INTRODUCTION

Postmenopausal osteoporosis (PO) is defined
as a silent skeletal disorder that characterized by
compromised bone strength predisposing to an
increased risk of fracture (Ozsoy et al. 2017). To
the best of the researchers’ knowledge, it is sug-
gested to directly result from a lack of endoge-
nous oestrogen in menopausal females (Manocha
et al. 2017). Specifically, hormonal changes, which
occur throughout perimenopause and the imme-
diate postmenopausal years, stimulate the recep-
tor activator of nuclear factor-κβ (RANK) and its
ligand (RANKL) production (both directly and
indirectly), leading to accelerated bone loss
(Stuss et al. 2013). Low bone mass density and
fracture are two major manifestations of PO pa-
tients clinically, and even vertebral compression
fractures may happen during routine daily activ-
ities without a specific fall or injury (Unni et al.
2015). In consequence, PO imposes a significant
burden on both the individual and society. For-

tunately, it can be prevented, diagnosed, and
treated before fractures occur (Cosman et al. 2014).

The most commonly used drugs approved to
treat PO are the antiresorptive medications to
inhibit osteoclastic bone resorption, such as the
nitrogen-containing bisphosphonates and
RANKL inhibitor denosumab, whereas they do
so by different cellular and molecular mechanisms
(Delmas 2008; Tsai et al. 2013). The other effec-
tive treatments comprise conventional radiogra-
phy, dual-energy X-ray and chemical biomarker
which a useful tool in detecting bone degrada-
tion (Orwoll et al. 2013). In addition, with the rap-
id development of high throughput techniques,
it has been applied to explore diagnostic poten-
tial signatures and biological processes of hu-
man diseases (Jordán et al. 2012). For example,
miR-133a in circulating monocytes was defined
as a potential biomarker for PO (Wang et al. 2012).
Despite certain number of biomarkers are uncov-
ered, it is still far from understanding molecular
mechanisms happening inside PO patients (Sved-
bom et al. 2014).

Traditionally, biomarkers are usually obtained
by identifying the most significant differentially
expressed genes (DEGs) between disease sam-
ples and normal controls (Liu et al. 2012a). Nev-
ertheless, genes are not only encoded as indi-
vidual genes or proteins, but also interacted with
others to form interactions (Vinayagam et al.
2014). Network concept has been proposed for
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purpose of solving this problem. Network-based
approach is capable of extracting informative and
significant genes and sub-networks dependent
on molecular networks, for instance, protein-pro-
tein interaction (PPI) network (Liu et al. 2012b).
Meanwhile, it offers a quantifiable description of
the networks that characterize the complex inter-
actions and the intricate interwoven relationships
that govern cellular functions, among those tis-
sues and disease related genes to explain the
molecular processes during disease development
and progression (Sun et al. 2013).

Therefore, in the present study, the research-
ers proposed to identify dysregulated modules
and genes between PO patients and normal con-
trols based on systemic module inference and
attract method. Firstly, PPI data were prepared
on the basis of the Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING) database
and gene expression data of PO. Subsequently,
attracted modules were explored from PPI net-
works by clique-merging algorithm and module
correlation density (MCD) analyses. Ultimately,
dysregulated modules between PO and normal
condition were determined utilizing attract meth-
od from attracted modules, and genes in the dys-
regulated modules were defined as dysregulated
genes. The results might provide potential biom-
arkers for detection and therapy of PO, and gain
an insight to reveal molecular mechanism under-
lying this disease.

METHODOLOGY

Collecting PPI Data

From a biological perspective view, genes are
inclined to interact with each other in complex
disease rather than independent entities (Bi et al.
2015). An effective way to uncover the underly-
ing biology from such co-operated genes is to
investigate their interactions. Consequently, the
researchers acquired all human PPIs from the
STRING database (http://string-db.org) (Szklarc-
zyk et al. 2014). A total of 16,730 genes and
1,048,576 interactions were obtained. Based on
them, the researchers removed interactions with-
out expression values or duplicated self-loops,
and discarded those of score <0.2. Note that a
score was given to each interaction by the
STRING database. In result, 7,996 genes and
48,778 interactions were retained.

 For purpose of making these interactions
more reliable and correlated to PO, we took their

intersections with PO dataset with accessing
number of E-MEXP-1618 (Reppe et al. 2010)
downloaded from the ArrayExpress database
(http://www.ebi.ac.uk/arrayexpress/). The dataset
presented on A-AFFY-44-Affymetrix GeneChip
Human Genome U133 Plus 2.0 Platform, and com-
prised 39 normal controls and 45 PO samples.
Standard corrections and normalizations were
conducted on the data to control its quality
(Irizarry et al. 2003; Bolstad et al. 2003; Bolstad
2013). After eliminating duplicated probes by fea-
ture filter method (Neuda et al. 2012) and con-
verting probes into gene symbols through the
annotate package (Zhu et al. 2010), 20,545 genes
were detected in the gene expression data. Only
interactions with two nodes both belonged to
the gene expression data were reserved. Ultimate-
ly, the PPI data with 7,953 genes and 48,778 inter-
actions were identified for further exploitation in
this study. We should notice that the expression
levels for genes in PO patients and normal con-
trols were different, and thus the PPI data for the
two conditions also were different.

Identifying Attracted Modules

In this section, the identification of attracted
modules was mainly divided into three parts.
Based on the PPI data as a backbone and SCC
algorithm, the researchers inferred two tissue
condition-specific PPI networks, one for normal
and one for PO. Next, modules were extracted
from the two conditional networks adopting a
maximal clique-merging approach. Attracted mod-
ules were identified by matching normal and PO
modules in gene compositions.

Inferring Normal and PO PPI Network

Among the PPI data in normal and PO condi-
tion, a number of false positive or non-effective
interactions might be presented. Hence the re-
searchers implemented a common used algorithm,
Spearman correlation coefficient (SCC), to re-
weight these interactions and construct the spe-
cific PPI network respectively. Herein, SCC is a
measure of correlation between two variables,
giving a value between -1 and +1 inclusive
(Szmidt and Kacprzyk 2010). If S(i, j) had a posi-
tive value, there was a positive linear correlation
between the pair of genes. Besides, for a PPI
between i and j, the absolute SCC value was de-
noted as its weight value. Only the interactions
with their P <0.05 were reserved, and inputted
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them to the Cytoscape to visualize the networks.
Cytoscape is an open source software project
for integrating biomolecular interactions with
high-throughput expression data and other mo-
lecular states into a unified conceptual network
(Shannon et al. 2003). Consequently, the re-
searchers obtained the PPI network for normal
controls and PO patients, respectively.

Extracting Modules from the Networks

The identification of modules was accom-
plished based on the clique-merging algorithm
(Liu et al. 2009; Srihari and Leong 2013). Firstly,
the maximal cliques were extracted from the PPI
networks by a fast depth-first search with prun-
ing-based algorithm (Tomita et al. 2006). Second-
ly, a weighted density was assigned to each
clique, and these cliques were ranked in non-
increasing order of their weighted densities. Ul-
timately, the researchers went through this or-
dered list repeatedly merging highly overlapping
cliques to build modules. In particular, for any
clique C, we repeatedly searched for a clique C'
such that the overlap                            where δ = 0.5
was a predefined threshold for overlapping (Sri-
hari and Ragan 2013). If such a C' was found, the
weighted inter-connectivity Iw between C and C'
was computed step further. If Iw (C, C') >δ, then
C' was merged into C forming a module, else C'
was discarded. In results, the researchers gained
the modules extracted from the PPI networks for
normal and PO conditions separately.

Comparing Modules Across Conditions

For purpose of comparing modules across
PO condition and normal controls, MCD for each
module under special condition was calculated
as follow:

Of which M was a similarity graph to perform
a maximum weight bipartite matching (Gabow
1976). Suppose that dPO stood for MCD of a mod-
ule in PO and dNormal represented MCD for nor-
mal controls, the absolute difference of MCD, ?
= |dPO – dNormal|, was denoted as the index to
choose similar or same module pairs across the
two conditions. Each module in this kind of mod-
ule pair was considered to be an attracted mod-
ule for PO.

Investigating Dysregulated Modules

Using attracted modules detected above, an
attract method, which is a knowledge driven an-
alytical approach for identifying and annotating
the gene-sets (Mar et al. 2011), was utilized to
investigate dysregulated modules between PO
patients and normal controls. It could be summa-
rized the determination of dysregulated modules
that discriminated the most strongly between cell
types or experimental groups of interest (Mar
2011). Particularly, under GSEA-ANOVA, the re-
searchers fitted an ANOVA model to each gene
where a gene’s expression was modeled by a sin-
gle factor representing the cell types as distinct
levels of this class. From the ANOVA model, the
F-statistic for gene i was calculated:

 Where MSSi represented the mean treatment
sum of squares, and captured the amount of vari-
ation due to the cell type group-specific effects:

And RSSi stood for the residual sum of
squares:

Of which v represented corresponding ex-
pression value in each replicate sample; rk for
each cell type k = 1, …, K; u stood for the mixed
effect model; N meant the total number of sam-
ples. Large values of the F-statistic indicated a
strong association whereas a small F-statistic
suggested that the gene demonstrated minimal
cell type-specific expression changes. In order
to make the F-statistic more confidence, we se-
lected T test to correct the log2-transformed F-
statistics and obtain P value for each potentially
shared module originated from synexpression
groups. Adjusting their P values on the basis of
false discovery rate (FDR) (Benjamini and Hoch-
berg 1995), the researchers defined the modules
with P < 0.05 as dysregulated modules between
PO and normal condition.

RESULTS

Attracted Modules

In the present study, the researchers em-
ployed gene expression data and PPI data to pro-
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vide the backbone for PPI networks of PO and
normal condition. In addition, SCC method was
applied to select interactions with P < 0.05 for
constructing the two specific PPI networks re-
spectively, and assign a weight value to each
edge in them. In result, we obtained the PPI net-
works for PO and normal controls with equal
amount of 7,953 nodes and 48,778 interactions.
As shown in Figure 1, the researchers found that
a major number of interactions ranged from 0 to
0.2 both for PO condition and normal condition.
But from an overall perspective of the two curves,
their weight distributions had clear difference,
especially in the section of 0.1 ~ 0.4. Neverthe-
less, these results couldn’t offer effective infor-
mation for clinical treatment and molecular mech-
anism, while too large scale of PPI networks might
be too generic. And thus the researchers focused
on detecting sub-networks or modules that ex-
tracted from the PPI networks.

Utilizing the fast depth-first method in clique
algorithm, a total of 10,089 and 8,620 maximal
cliques were explored from the PPI networks of
PO samples and normal controls, respectively.
After removing maximal cliques with too small
genes (Node number < 4), 2,172 and 1,017 were
reserved for the two conditions separately. Sub-
sequently, a weighted density was assigned to
each maximal clique, in particular, the statistical
chart for cliques of their node numbers and den-
sities were illustrated in Figure 2. The results
uncovered that with the increase of node num-
ber, the amount of cliques was decreased. In de-
tail, the most node number in normal condition

was 9, while that of PO condition was 11. Besides,
a maximal clique of PO possessed the highest den-
sity compared with normal condition. In addition,
maximal cliques with high overlaps (? ? 0.5) were
merged together to form a module, and the re-
searchers obtained 11 modules for PO condition
(Table 1) and 6 modules for normal condition (Ta-
ble 2). For each module, the number of genes en-
riched in it was denoted as its count value. Mod-
ule 4 of PO had the highest count of 10.

When comparing the modules across PO and
normal condition based on the computation of
absolute MCD difference, the researchers dis-
covered that two pairs of matched modules had
the same gene compositions coincidently. They
were Module 5 of PO versus Module 2 of normal,
and Module 8 of PO versus Module 6 of normal.
In addition, each module pair was considered to
be an attracted module for PO, and hence two
attracted modules were gained, Module 1 and
Module 2.

Dysregulated Modules

After identifying attracted modules for PO
patients, further study should be conducted fo-
cusing on investigating significantly dysregu-
lated modules and genes between PO and nor-
mal controls. In this work, GSEA-ANOVA model
in attract method was implemented, which also
gave us a way to gauge genes that informative
for a particular set of cell types. Supposing that
each attracted module was an attractor, the dys-
regulated modules were investigated according
to the F-statistic significance analysis. With the
thresholding of P <0.05, the researchers could
gain the dysregulated modules for PO, and genes

Fig. 1 Weight distribution of interactions in pro-
tein-protein interaction (PPI) networks for post-
menopausal osteoporosis (PO) condition and
normal controls.
Source: Author
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enriched in dysregulated modules were regard-
ed as dysregulated genes. The results showed
that two dysregulated modules were identified
(Module 1 and Module 2). Specifically, Module 1
with P = 1.25E-03 was comprised of 6 dysregulat-
ed genes (ASF1B, CDC45, MCM5, RNASEH2A,
MCM4 and MCM7). Whereas Module 2 (P =
3.18E-04) involved 7 dysregulated genes (LIG1,
MCM5, MCM3, CDC45, MCM4, CDC6 and
FEN1). Interestingly, CDC45, MCM4 and MCM5
were deposited in both of the two modules. Ex-
cept the common ones, 10 dysregulated genes
were detected totally.

What’s more, the networks for Module 1 and
Module 2 were described in Figure 3. All dysreg-
ulated genes worked or interacted with the other
genes of modules. There were 15 interactions
among 6 nodes for Module 1, and 21 interactions

involved in 7 nodes for Module 2. The dysregu-
lated module and genes might play more signifi-
cant role than the other modules and genes in
the progression of PO and be potential biomark-
ers in the target treatment.

DISCUSSION

It has been revealed that the most significant
genes and modules obtained from different stud-
ies for a particular disease are typically inconsis-
tent (Ein-Dor et al. 2005). To overcome this prob-
lem, one could evaluate pathogenic genes or
modules for disease-association using a network
strategy (Zhang et al. 2013). For instance, Mag-
ger et al. (2012) combined PPI and gene expres-
sion data to construct tissue-specific PPI net-

Table 1: Differentially methylated genes (DMGs)

Rank DMG P value Rank DMG P value

1 ERCC3 4.48E-59 24 VCL 5.46E-47
2 TNFRSF9 5.22E-57 25 MYEOV 6.56E-47
3 HRH4 1.52E-56 26 CSNK1D 1.12E-46
4 PVT1 9.40E-56 27 ZFP36L1 1.21E-46
5 FOXP1 2.96E-55 28 WDR45B 1.59E-46
6 ZGPAT 5.20E-54 29 SORCS2 1.28E-42
7 RCAN3 2.91E-53 30 RUNX3 8.15E-40
8 IQCB1 4.53E-53 31 ATXN7 1.55E-38
9 SPTBN1 6.21E-53 32 TCF12 7.88E-28
10 PYURF 2.67E-52 33 FYCO1 1.91E-21
11 WDR49 2.71E-52 34 WDR20 2.85E-20
12 VRK2 1.78E-51 35 PDCD1 6.33E-14
13 GMDS 5.64E-51 36 CD1C 6.62E-14
14 LOC256880 6.33E-51 37 C6orf10 1.06E-13
15 PTEN 2.50E-50 38 MRGPRG-AS1 3.22E-13
16 DOCK2 3.39E-50 39 TMEM198 9.26E-13
17 TMCO3 7.56E-50 40 HLA-DQB1 2.85E-12
18 TRIM27 2.98E-49 41 MAGI2-AS3 8.17E-12
19 DRGX 3.32E-49 42 HLA-DRB6 2.19E-10
20 LINC00520 3.42E-49 43 DNAJB6 3.47E-10
21 RAD51B 5.56E-49 44 ASCL2 2.48E-09
22 FAM120B 2.23E-48 45 HLA-DRB5 7.44E-08
23 ADAMTS14 2.28E-48 46

Table 2: Significant KEGG pathways with P < 0.05

ID Pathway P value

PATH:hsa04514 Cell adhesion molecules (CAMs) 1.71E-03
PATH:hsa04672 Intestinal immune network for IgA production 2.56E-03
PATH:hsa05310 Asthma 2.72E-03
PATH:hsa05320 Autoimmune thyroid disease 3.13E-03
PATH:hsa05330 Allograft rejection 3.43E-03
PATH:hsa05332 Graft-versus-host disease 4.07E-03
PATH:hsa05416 Viral myocarditis 4.94E-03
PATH:hsa04940 Type I diabetes mellitus 5.50E-03
PATH:hsa05150 Staphylococcus aureus infection 6.09E-03
PATH:hsa05321 Inflammatiory bowel disease (IBD) 7.58E-03
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works and used them to prioritize disease genes.
Beyond straightforward scoring genes in the
complex network, it is crucial to study the behav-
ior of modules across specific conditions in a
controlled manner to understand the modus op-
erandi of disease mechanisms and to implicate
novel genes (Srihari and Ragan 2013), since some
of important genes may not be identifiable
through their own behavior, but their changes
are quantifiable when considered in conjunction
with other genes as modules. What is required,
therefore, is a systematic tracking gene and mod-
ule behavior across specific conditions in a con-
trolled manner (Wang et al. 2015).

In the present paper, the researchers investi-
gated dysregulated modules and genes between
PO patients and normal controls based on the
systemic module inference and attract method.
The results showed that a total of 2 dysregulat-
ed modules (Module 1 and Module 2) and 10
dysregulated genes (ASF1B, CDC45, MCM5,
RNASEH2A, MCM4 MCM7, LIG1, MCM3,
CDC6 and FEN1) were obtained for PO. In partic-
ular, CDC45, MCM4 and MCM5 were the com-
mon genes of the two modules. Among dysregu-
lated genes, 2 (CDC45 and CDC6) belonged to
the cell division cycle (CDC) family, and 4 ones
(MCM3, MCM4, MCM5 and MCM7) were at-
tributed to the minichromosome maintenance
complexes (MCMs).

CDC45, an essential gene required to initia-
tion of DNA replication in eukaryotes, is a mem-

ber of the highly conserved multi-proteins CMG
(CDC45/MCM2-7/GINS) that is thought to func-
tion as a replicative DNA helicase (Ilves et al.
2010). It can directly interact with all MCM2-7
genes, GINS, and other replication proteins. The
MCM2-7 helicase complex is activated when as-
sociated with CDC45 and GINS and that this ac-
tivation involves multiple aspects of the unwind-
ing process, including enhanced the ATP hy-
drolysis and better DNA substrate recognition.
At the same time, CDC45 and GINS allosterically
form a scaffold on the MCM ring that assists in
the proper coordination of different subunits in
the MCM2-7 motor, thus leading to its efficient
unwinding of DNA strands (Costa et al. 2011).
Ilves et al. (2010) had demonstrated that MCM2-
7 core enzyme provides the necessary activation
step for the replicative helicase and the concom-
itant initiation of DNA synthesis, and provided
evidence that the MCM4 was a distinct and im-
portant target of regulatory cell-cycle-dependent
kinases and the main binding partner for the GINS.
As a consequence, dysregulated gene MCM3,
MCM4, MCM5 and MCM7 and their enriched
modules were very significant for molecular bio-
logical activities in human beings, and their dys-
regulations perhaps led to certain disease, such
as PO.

What’s more, a considerable portion of
CDC45 localizes in a region other than the DNA
replication forks in nuclei or it localizes on the
replication forks but it is not fractionated with

Fig. 3. Network for dysregulated modules. A: Module 1; B: Module 2. Nodes represented core genes,
and edges were the interactions among any two genes.
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the fork proteins owing to its tight association
with presumably nuclear scaffolds (Takaya et al.
2013). Besides, the level of CDC45 recovered from
Triton-insoluble -containing fraction was peaked
at middle of S phase in synchronized HeLa cells
(Takaya et al. 2013), which indicated its signifi-
cance for cell divisions of women. Beyond that,
CDC6 functions as a regulator at the early steps
of DNA replication, localizes in cell nucleus dur-
ing cell cyle G1, but translocates to the cyto-
plasm at the start of S phase (Sideridou et al.
2011). Its subcellular translocation during cell
cycle is regulated through its phosphorylation
by CDKS. CDC6 could also interacted with
MCM2-7 and formed an complex through a mul-
tistep reaction to serve as a platform for MCM
double-hexamer assembly (Fernández-Cid et al.
2013). Consequently, the researchers might infer
that CDC45, CDC6 and their enriched modules
played an important role in DNA replications and
cell cycle related activities of PO patients.

CONCLUSION

In conclusion, the researchers have identified
2 dysregulated modules and 10 dysregulated
genes for PO utilizing module inference and at-
tract method. The findings may provide potential
biomarkers for prevention and treatment of PO
progression, and give great insights to revealing
molecular mechanism underlying the disease.

RECOMMENDATIONS

Whereas, how these dysregulated modules
interacted with each other is still unclear, and the
validations should be carried out in future.
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